

Status of the in situ 14C extraction system at CEREGE (Aix-en-Provence, France)

Magali Ermini, Irene Schimmelpfennig*, Karim Keddadouche, Thibaut Tuna, Edouard Bard, Maarten Lupker, Kristina Hippe, and Lucilla Benedetti

Aix Marseille Université, CNRS, IRD, INRA, Coll France, CEREGE, Aix-en-Provence, France (*correspondence: schimmelpfennig@cerege.fr)

ETH-Zurich, Geological Institute, Biogeoscience Group, NO G 54, Sonneggstrasse 5, 8092 Zürich, Switzerland

Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12249 Berlin, Germany

Widely and routinely used, long-lived cosmogenic nuclides such as 10Be, 26Al and 36Cl are highly useful for studies that aim at better understanding Earth surface. Increasingly brought to light, another nuclide boosts this cosmogenic toolbox to constrain landscape evolution on short timescales: in situ cosmogenic 14C, thanks to its relatively short half-life of 5700 years. Moreover, because it is produced in quartz, in situ 14C can be coupled with 10Be and 26Al measurements on the same sample. This allows constraining exposure and erosion histories, such as those related to glaciers fluctuations, on time scales up to 25 ka.

There are two main challenges when extracting in situ 14C from quartz: 1- the potential contamination with the ubiquitous atmospheric 14C and 2- the complete extraction and collection of all carbon gas species released from the heated quartz grains. Advanced techniques have started to emerge in different countries. Based on a slightly modified version of the extraction line design at ETH Zurich (Hippe et al., Quat. Geochron. 4, 493-500, 2009; Hippe et al., NIMB 294, 81-86, 2013), we implemented the first French in situ 14C extraction system at CEREGE. The extracted and purified gaseous CO$_2$ is not graphitized but directly measured at the AixMICADAS Facility at CEREGE (Bard et al., 2015), with the main advantages that potential contamination during the graphitization is avoided and time is saved.

Here, we present our new in situ 14C extraction procedure, line development and performance. Vacuums are as low as 10^{-8} to 10^{-9} mbar, and we are currently in the phase of validating the extraction line set-up, by testing CO$_2$ yields, blanks and interlaboratory materials. The results of these preliminary tests will be shown.