Earth’s Continental Crust Through Time

ROBERTA L. RUDNICK

1Department of Earth Science and ERI, UC Santa Barbara, Santa Barbara, CA, USA

Among the terrestrial planets in our solar system, Earth is the only one to have continents. These are high-standing regions with an evolved crust, on average 35 km thick, underlain by refractory peridotitic mantle lithosphere. The continental crust provides most of our society’s resources and is the platform on which our species evolved. Weathering of the continental crust is a major source of dissolved ions in seawater and, thus, influences atmospheric CO$_2$ concentrations. Despite its importance, major questions remain regarding its composition, when and how it formed, and how it may have evolved over time. In this talk I will review evidence for the nature of the uppermost continental crust, as sampled by fine-grained terrigenous sedimentary rocks (shales, loess, glacial diamicrites). Using concentrations and ratios of relatively insoluble elements in shales and diamicrites over Earth history, as well as novel stable isotope data, it can be shown that the upper continental crust had significantly greater proportions of mafic and ultramafic rock types in the Archean, and that a fundamental transformation occurred from ~3 Ga to 2.5 Ga that resulted in an upper crust composition similar to today’s. This transformation is most parsimoniously explained by the widespread emplacement of evolved igneous rocks (e.g., granites, senso lato) and may mark the onset of plate tectonics.