Characterization of analogues of amino acids and sugars in radiolysis products using solid phase micro extraction (SPME)-GC-MS

Y. HONGO*1, K. YAMADA2, H.J. HÜBSCHMANN3, AND R. Yi1

1 Earth-Life Science Institute, Tokyo Institute of Technology, Meguro, Tokyo 152-8511, Japan (*correspondence: yayoi@elsi.jp)
2 AMR, Inc., 2-13-18, Nakane, Meguro, Tokyo 152-0031, Japan (k-yamada@amr-inc.co.jp)
3 CTC Analytics AG, 25-03, 3-23, Matsuyamachi, Chuo-ku, Osaka 542-0067, Japan (HJHuebschmann@ctc.ch)

Purpose
Molecular evolution in the premitive earth has been investigated in terms of abiotic formation of amino acids, sugars, and their analogues which attracts the researchers studying the origin of life. Divers biomolecular analogues formed in prebiotic syntheses should be targeted to discuss the early earth’s selections of molecules. An NIST database serch combined with 70eV GC-EI-MS would be most plausible way to qualitat molecules in the first step without authentic standards. However, it takes long time and large effort to extract and derivatize the semi-polar targets before GC-MS. We are studying new approach to extract the target from the messy gamma radiolysis products with solid phase micro extraction (SPME ArrowTM) and on-fiber derivatization.

Figure A scheme of the on-fiber extraction and derivatization.

Procedure
Online sample preparation and injection were conducted by a programmed CTC PAL RTC System. Optimization of parameters in the a) extraction and b) on-fiber derivatization before c) GC were carried out using standard sol.(1-1000uM), and Carbon WR and Acrylate fibers. Gamma radiolysis of aqueous small molecules gave no signals correponding to the proteinogenic amino acids in a conventional HPLC. Applying the developed method, non-proteogenic amino acids and sugar analogues in the radiolysis would be reported.